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A velocity method for estimating dynamic strain and stress in pipe structures is
investigated. With this method, predicted or measured spatial average vibration
velocity and theoretically derived strain factors are used to estimate maximum
strain at the ends of pipes. Theoretical investigation shows that the strain at a point
is limited by an expression proportional to the square root of the strain energy
density, which in turn is related to its cross-sectional average. For a reverberant
"eld or for an in"nite pipe, the average strain energy density is proportional to the
mean square velocity. Upon this basis, the non-dimensional strain factor is de"ned
as the maximum strain times the ratio of the sound velocity to the spatial root
mean square vibration velocity. Measurements are made con"rming that this is
a descriptive non-dimensional number. Using a spectral "nite element method,
numerical experiments are made varying the pipe parameters and considering all
16 homogeneous boundary conditions. While indicating possible limitations of the
method when equipment is mounted on pipes, the experiments verify the
theoretical results. The velocity method may become useful in engineering practice
for assessments of fatigue life.

( 2000 Academic Press
1. INTRODUCTION

Vibrations in pipes are excited by mechanical machinery, by pumps and by internal
turbulent #uid motion. Pipe vibrations cause annoying, sometimes hazardous,
noise radiation and can cause failure due to fatigue, possibly resulting in
economical and environmental disasters.

Predictions of pipe vibrations are made with the "nite element method (FEM)
with direct methods formulated in the frequency domain, e.g., references [1}4] and
with statistical energy analysis (SEA) [5, 6]. Most of these methods are not yet
su$ciently developed to result in commercially available code while the cost, in
sThe major part of this work was undertaken while the "rst author was at the ISVR.
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man and computer time, required for full-scale FE calculation makes this methods
application to large pipe structures impractical. Additionally, the lack of knowledge
of the sources of vibration makes any prediction doubtful. Therefore, measure-
ments are needed to assess pipe structures integrity, this being increasingly
interesting, as there is a demand for &&life extension'' of existing plants.

In the chemical industry, energy production and on o!-shore installations there
are often many kilometres of pipes. Clearly, it is impossible to instrument such
plants at every point with strain gauges to "nd maximum strain or stress to predict
fatigue life. A more practical cause of action would instead be to measure vibration
amplitudes at selected positions using portable accelerometer and analyser
equipment.

Previously, relations between vibration velocity and strain have been obtained
where the simple outcome is that within an element the strain is approximately
proportional to the ratio of the vibration velocity to the dilatational (sound)
velocity in the element's material [7}14]. The objective of the present work is to
further our understanding of this &&velocity method'' for estimating strain and in
particular its application to pipe structures.

Hunt initiated the method studying single-mode response in rods and beams
showing that the maximum strain in a rod (at a vibrational node is equal to the
maximum velocity ratio (at an antinode) [7]. Within beams of rectangular cross-
section, the maximum strain is a factor of J3 larger than the maximum velocity
ratio; at a blocked end the maximum strain is increased by an additional 40}65%
[7]. Ungar considered wave "elds in semi-in"nite plate and plate-beam structures
deriving the strain as a function of the amplitude of an incoming wave [8]. Ungar
de"ned the &&dynamic strain concentration factor'' as the ratio of the strain at
a restriction (such as a frame) to the average strain within the element. Stearn
investigated the statistical variability of the strain within plate and cylinder
elements in which there is an approximately di!use "eld, showing the variation
for frequency band averages to be proportional to the square root of the number
of modes within the band [9]. Stearn also calculated and measured the strain
concentration at junctions between plate elements with di!erent wall thickness
[10]. Norton and Fahy made measurements on an oil-"lled pipe verifying, also
for such structures, the simple relation between vibrational strain and radial
velocity [11]. However, at a restriction in the form of a #ange, the measured
strain concentration factor was very large, of the order of 10}100. This may be
possible as the strain at the #ange was compared to the velocity at the same place
rather than the vibrations between discontinuities. Koss and Karczub developed
a more elaborated version of the velocity method [12]. Accelerometer readings
were used to "nd the amplitudes of the four wave solutions to the beam equations
and from this the strain was calculated. Recently, Karczub [13] and Karczub and
Norton [14] have reviewed and developed the velocity method for predicting
strain.

The present work, as well as the references [7}14], studies perfect structures.
Thus, it does not consider geometric strain concentration at imperfections and
inhomogeneities; it is restricted to dynamic strain concentration, as de"ned by
Ungar [8].
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The dynamic strain concentration is de"ned by the &&transfer function'' between
average vibration and the maximum principle strain amplitude at pipe ends. Thus,
the usefulness of the velocity method is to some extent restricted by the fact
that only power spectral data is provided; often fatigue analysis is based on
temporal strain information. However, there are methods based on spectral density
data, e.g. reference [15], and, in any case, the spectral data provide indication of the
severity of vibration. The velocity method is primarily intended to be a screening
method.

The present work develops an alternative theoretical approach to the velocity
method based on considerations of vibration energy. The maximum strain, and
stress, at a point is related to the cross-sectional average of strain energy density.
This gives a foundation for arguing that the maximum strain, being related to the
strain energy and hence the average kinetic energy, relates to the average vibration
velocity in the pipe. This approach di!ers from that of references [8}10] where the
maximum strain is related to the wave amplitude of incoming waves and, to
a greater extent, from that of references [7, 14] where the maximum strain is related
to the maximum vibration amplitude. It is argued that the energy approach rather
than the maximum amplitude approach is conceptually simpler and it relates
directly to results from SEA calculations. Moreover, it is easier to estimate average
vibration than to "nd the maximum vibration amplitude.

In section 3, measurements on a pipe structure with a blocked end are presented.
The results agree with those by Karczub and Norton [14] apart from a factor J2,
for which a possible explanation is given. The measurement results are compared to
those found with the direct dynamic "nite element method presented in reference
[4], here developed using routines for calculating average vibration response and
strain and stress. The good agreement of the results justi"es the numerical
approach for simulating vibration velocity and strain.

In section 4, numerical experiments are presented. Dimensional analysis shows
that the vibration of pipes is a function of only a few non-dimensional numbers. By
varying these and the boundary conditions, 16 in all, a fairly comprehensive
investigation is made of the relation between average radial velocity and maximum
strain in pipes. The results show the potential for the velocity method for assessing
fatigue of pipe structures. However, they also point to a possible limitation for
special boundary conditions.

2. MAXIMUM STRAIN AND STRESS IN CYLINDERS

In this section, the stress and strain in cylinders are expressed. Limits for their
maxima are found to be proportional to the square root of the strain energy
density. For reverberant "elds or in wave "elds, the strain energy density is related
to the average vibration energy. It is argued that the average vibration energy can
be estimated by the average radial vibration velocity, which is accessible from
comparatively simple measurements.

The motion of the cylinder is described with an implicit time dependence of the
form e~*ut. Thus, the analysis applies for harmonic vibration and stationary
random vibration.



Figure 1. Cylinder co-ordinate system.
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2.1. STRAIN AND STRESS IN CYLINDERS

The motion of thin-walled cylinders is investigated using a Fourier
decomposition of the circumferential dependence of the displacements and using
the Kirchho! hypothesis [16]. Thus, the strains, in directions speci"ed in Figure 1,
are
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Accordingly, considering an isotropic Hookean material and assuming plane stress
[16, p. 14], the stresses are
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where
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and where E is Young's modulus and l is Poisson's ratio.
The state of stress at a point is given by the stress tensor, S [18],
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where the last equality follows from an eigenvalue decomposition of S. Thus, p
i

are the eigenvalues and the eigenvectors are the columns of U. From this, it
follows that if the stress is expressed in the co-ordinate system given by the stress
tensor's eigenvectors, the shear stress vanishes and the stresses in these
co-ordinates, the principal stresses, are the eigenvalues of S, p

1
and p

2
. It will be

assumed that

Dp
1
D*Dp

2
D. (9)

Similarly, the strain at a point is given by the strain tensor
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For a Hookean material the directions of principal stress and principal strain
coincide. Expressed in a co-ordinate system in these directions the shear strain
vanishes and the principal strains are c

1
and c

2
. From equations (6) and (9), for an

isotropic material
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where c*
1

denotes the complex conjugate of c
1

and where e
p

is the strain
energy density [16, equation (1.85)]. The strain energy density is invariant to
co-ordinate transformations, hence it is equally expressed in the cylinder
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co-ordinate system
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where
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To "nd a similar limit for the maximum principal strain, it is easier to go backwards
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This function has a minimum at Dc
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which establishes the limits for the maximum strain and stress. The possible
overestimation is found from
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By similar calculations
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For an isotropic material 0)l)0)5. Equations (18) indicate that the maximum
overestimation of a factor of two occurs when l"0)5, and the two principal
stresses are equally large.

2.2. MAXIMUM CROSS-SECTIONAL STRAIN ENERGY

The limits above for the maximum stress and strain in a point are expressed as
functions of the strain energy density. In this section, the points on the cylinder
cross-section where the strain energy is maximized are identi"ed and limits for these
maxima are found to be proportional to the cross-sectional average of the strain
energy density.
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The strain and stress given in equations (4) and (6) are linearly varying functions
of z and consequently the maxima for strain and stress occur either on the inside or
outside of the pipe wall, i.e., when z"$¹

c
/2.

The value of / for which the strain energy density is maximized is found when it
is recognized, see equations (4) and (13), that this function can be expressed as
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from which it is concluded that, for each trigonometric order n,
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If there are several trigonometric orders present and they are assumed uncorre-
lated, the estimated value of the maximum e
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where N is the number of trigonometric orders that are excited. This maximum
value results if the strain energy densities of all the trigonometric orders are equal
and if they all are maximized at the same value of /, at the same time. This requires
fully coherent sources, for example a point source. However, as the di!erent
trigonometric orders travel with di!erent velocities, their relative phases will vary
with frequency, unless the source is very peculiar. Therefore, for broadband
excitation several wavelengths away it is reasonable to assume that the di!erent
trigonometric orders are incoherent, allowing equation (21) to be applicable on
average.

It should be remembered, though, that if the trigonometric orders are coupled by
the boundary conditions, for instance if the pipe is supported only at one point,
equation (23) might apply. In this study, only homogeneous boundary conditions of
the "rst and second kind are considered and these do not couple the trigonometric
orders, so equation (21) is tentatively assumed to be valid also for coherent
excitation.

The limits of maximum strain and stress are expressed above as functions of the
strain energy density at z"$¹

c
/2 averaged over the circumferential. The next step

is to express these limits as functions of the averaged cross-sectional strain energy
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density. To that end, consider
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where the average over z is calculated, as in the derivation of the Arnold and
Warburton cylinder theory [17], by neglecting the trapezoidal form of the cylinder
cross-section. The factor of four in the inequality results as, for any a and b,
Da#J3bD2)4( DaD2#DbD2). In equation (24), the left- and right-hand sides are equal
if the in-plane strain is a factor 1/J3 less than the #exural strain, in each of the four
terms. For propagating radial-axial waves, below the ring frequency this is not the
case. For these waves, the dominating terms in the strain energy density are the
in-plane axial, circumferential #exural and #exural shear [19]. These terms appear
in di!erent terms on the left-hand side of equation (24). Thus, using the right-hand
side of the equation for estimating stress, in many cases, leads to an overestimation
of a factor in the range of 2/J3 to 2, as compared to the left-hand side. However,
the result leads to the bene"cial conclusion that the maximum stress in
a cross-section of a cylinder is limited by an expression that is proportional to the
square root of the cross-sectional average of the strain energy density.

2.3. DISTRIBUTION OF STRAIN AND STRESS ALONG THE CYLINDER

Hamilton's principle states that the true motion of a system is the one that
minimizes the time-averaged di!erence between potential and kinetic energy. For
two important cases this di!erence is zero. Thus, for a wave in an in"nite cylinder
the time averages of the kinetic and the potential cross-sectional energy densities,
for any x, are equal. Also, for a "nite cylinder performing free vibrations and
obeying any of the classical boundary conditions (i.e., homogeneous boundary
conditions of the "rst or second kind), the time average total kinetic and potential
energies are equal.

The classical boundary conditions are characterized by zero work, thus no
exchange of energy, at the boundary. For the practically useful case of a &&long'' pipe
(many wavelengths) the same condition may apply within the pipe. At frequencies
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below half the ring frequency and above cut-on for each n*1, there are only two
real solutions to the dispersion relations for cylinders corresponding to a right and
a left going wave respectively. In addition, there are six solutions corresponding to
&&near"eld'' terms. These near"eld terms are found in the vicinity of the excitation
and boundaries, decaying exponentially away from irregularities. This means,
within the pipe at a point x between a boundary and the excitation, there are only
two waves present. If the boundary condition is conservative and the damping is
not large, the amplitudes of these two waves are equal. Consequently, the vibration
"eld in such a point is

u"u
n
sin(j

n
x#a

n
)cos(n/), v"v

n
cos(j

n
x#a

n
)sin(n/),

w"w
n
cos(j

n
x#a

n
)cos(n/), (25)

where j
n
is found from the dispersion relations as are the relative amplitudes u

n
/w

n
and v

n
/w

n
. The phase constant a

n
is governed by the nearest boundary condition, at

x"0. The amplitude w
n

is determined by the excitation and by the boundary
conditions at the other end.

Langley derived expressions for the energy #ow in cylindrical shells [20, equa-
tions (21)}(29)]. By merely inspecting these expressions, considering a displacement
"eld of the form (25), it is seen that the reactive work in the pipe is zero at the nodes
of the radial displacement which are given by

cos(j
n
x#a

n
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(If losses are present there will, however, be a small active energy #ow to balance the
energy dissipation in the pipe between the considered point and the boundary.)

This quite lengthy discussion leads to two interesting conclusions. First, consider
a pipe section in-between the boundary and a nodal point, as given by equation
(25), located at least one or two wavelengths away from the boundary. Such a pipe
section is from a reactive point of view energetically isolated from the rest of the
pipe. Thus, Hamilton's principle applies for this section and the average potential
and kinetic energies are equal. Second, for the vibration "eld in such a section, the
excitation and the boundary conditions at the other end are only re#ected by
the amplitude of the (comparatively few) incoming waves. Because of this, the
concentration of stress at a boundary may be investigated without considering
the excitation and the other boundary condition in detail.

2.4. RELATING MAXIMUM STRESS TO AVERAGE VIBRATION VELOCITY

In the previous sections, "rst the maximum strain and stress were found to be
limited by expressions proportional to the square root of strain energy density.
Then the strain energy density was found to be limited by an expression
proportional to its cross-sectional average. It was shown that the average strain
energy within a pipe section, extending one or a few wavelengths from a boundary,
is equal to the average kinetic energy within this section.
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The kinetic energy density in a thin-walled pipe is
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Considering the radial-axial modes (n*1), for frequencies well below the ring
frequency, the axial in-plane inertia may be neglected and the cylinder motion is
almost inextensional. Then the cross-sectional average kinetic energy density, to
a good approximation, is proportional to the square of the radial velocity [19]
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It is then hypothesized that the maximum strain at a boundary is given by
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where S T denotes spatial average and where the non-dimensional constant konst is
dependent on frequency and boundary condition. It may also depend on excitation
and the relative amplitudes of the incoming waves of di!erent trigonometric orders
in which case the hypothesis is not e!ective. However, for boundary conditions that
are separable in x and / and for pipes where the excitation is several wavelengths
away from the boundary, the arguments above support the idea of an e!ective and
descriptive non-dimensional number.

Upon this basis, a non-dimensional strain factor C is de"ned,
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Following Hunt [7] it is seen that for a rod C"J2. Within a rectangular beam
C"J6 whereas at a blocked end of a beam, according to Hunt, it is an additional
40}65% higher. Karzub and Norton published a list for the relation between
maximum velocity and maximum strain [14]. When the trigonometric orders are
uncorrelated, the maximum vibration velocity within a pipe (neglecting near"eld
e!ects) is twice the root mean square (r.m.s.) average velocity. Upon this basis, the
value given in reference [14] for cylinders corresponds to C"4, whereas the value
calculated in section 3 is C+6.

3. EXPERIMENTS

Experiments are made on a pipe to verify that the maximum strain in a pipe is
proportional to the r.m.s. average vibration velocity and to "nd the constants of
proportionality. It was expected that the classical boundary condition responsible
for the largest strain concentration is that where all displacement components are
blocked. To facilitate the application of this boundary condition a lightweight
plastic (drain) pipe was chosen for the experiments.



Figure 2. Accelerance of ring cut from plastic pipe. *, cut-on frequencies, equation (31), with
Young's modulus obtained from a curve "t.
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In what follows, the relation between the average vibration velocity of the pipe
and the strain at the blocked end is estimated from measurements. The results are
compared with those from calculations with the spectral "nite element method
presented in reference [4]. Preliminary measurements are made to determine the
material data of the plastic pipe. Also, to verify the spectral FE-code, the results of
a simple response calculation are compared to measurements.

3.1. PIPE DATA

A 2 cm section of the pipe was suspended on a thin elastic string and the
accelerance was measured using a lightweight accelerometer and an impact
hammer. Figure 2 shows the transfer accelerance to a point 1803 from the force.

The resonance frequencies of a thin-walled ring given by [21]
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are used to estimate the Young's modulus with a least-squares "t to the "rst three
resonances, corresponding to n"2, 3 and 4. The experiment also veri"es the use of
linear thin-walled theory for describing the plastic pipe.

The pipe loss factor is estimated from the rings point mobility using the 3 dB
bandwidth for the "rst four resonances.



TABLE 1

Pipe data

E (N/m2) o (kg/m3) l R (mm) ¹
c
(mm) g
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g
v

3)55]109 1)43]103 0)4 33 1)9 0)025 0)01

158 S. FINNVEDEN AND R. J. PINNINGTON
The response calculation, described in section 3.2 below, was initially made with
Poisson's ratio, v"0)3. This resulted in slightly too low cut-on frequencies for the
higher order radial-axial modes, when compared to measurements. The resonance
frequencies for the n"1, beam modes, are almost independent of the Poisson ratio
while for the n*2 modes, the cut-on frequencies are proportional to 1/J1!v2
[19]. Using this, an improved estimate of the Poisson ratio is obtained as v"0)4.

The data for the pipe are given in Table 1 and are used in the calculations.

3.2. PIPE VIBRATION RESPONSE

The plastic pipe was suspended by two elastic strings. Vibrations were excited by
an impact hammer and the acceleration was measured with a lightweight
accelerometer. The signals were high-pass "ltered to reduce the low-frequency
pendulum contribution to the measurements. The experiment was also simulated
with the spectral FE program [4] using a frequency resolution of 1 Hz, as with the
measurements. The calculations neglected the #uid loading from the air.

Figures 3}5 show the measured and calculated point mobility, input power from
the point source and transfer mobility. At very low frequencies, the frequency
resolution is too coarse to accurately display the peak value at resonance. At high
frequencies, it appears as if the damping and sti!ness of the laboratory pipe
increases, as for the ring in Figure 2. Despite these frequency variations, the
agreement between measured and calculated vibration response justi"es the
spectral FE code.

3.3. STRAIN CONCENTRATION AT A BLOCKED END

3.3.1. Measurement procedure

A 100 mm long solid steel cylinder was &&push-"tted'' into the plastic pipe and
then glued to a heavy plate to block the pipe motion at the end. The other end of the
pipe was suspended in an elastic string.

Vibrations in the pipe were excited with a small coil and magnet vibrator that
was fed with pseudo-random noise. To get a reasonable signal-to-noise ratio also at
higher frequencies the noise amplitude was increased with 2 dB/octave from
100 Hz.

The strain at the blocked end was measured with strain gauges developed by Liu
and Pinnington [22, 23]. These gauges are made from piezo-electric "lm that is



Figure 3. Magnitude of point mobility of plastic pipe; **, measured; } } }, calculated.

Figure 4. Octave band averaged Input Power to plastic pipe: **, measured; } } }, calculated.
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folded so that they are sensitive only to strain in one direction. They have higher
sensitivity than usual wire gauges and linearity even at higher frequencies. Another
advantage is that the signals are conditioned with the same type of charge ampli"er
that is used for accelerometer measurements; this is convenient and gives a good
phase match between measurement channels.



Figure 5. Magnitude of transfer mobility in plastic pipe: **, measured, } } }, calculated.
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The strain gauges were "tted to the pipe with double-sided tape and were
screened with aluminium foil on the outside of the pipe. One of the major
disadvantages with these gauges is that they are very sensitive to electromagnetic
"elds and despite the screening the measurements were quite noisy. (In the results
shown below, the 50 Hz component is suppressed by setting it to the average of the
measured value at 48 and 52 Hz). Liu calibrated carefully [22]. The calibration of
the strain gauges [23] was con"rmed by comparison with a standard strain gauge
that was glued to the pipe.

Five strain gauges were randomly positioned at the blocked end*three in the
axial direction and two in the circumferential direction. Accelerometer positions
were chosen at random within a segment of the pipe starting one pipe diameter
away from the blocked end and extending approximately 1 m towards the
excitation. For each of the strain gauges, the transfer functions between strain
and acceleration in four positions were measured. The accelerometers were then
moved and the measurements repeated. The eight transfer functions were then
integrated, their r.m.s. average was calculated and "nally the result was inverted so
that an estimate of the ratio of the strain to the average vibration velocity was
found.

Figure 6 shows a typical accelerometer and strain measurement. Also shown is
the coherence, which is quite low at frequencies where the strain is small. Figure 7(a)
shows the strain factor, equation (30), for the three axial and Figure 7(b) for the two
circumferential strain gauges. Figure 8 shows, for each of the three axial strain
gauges, the relative standard deviation of the eight transfer functions between
acceleration and strain. The relative standard deviation is of the order of 0)4
showing that, in this experiment, eight accelerometer readings are just about



Figure 6. Upper, **, strain at point 1 (in milli strain); } } }, acceleration of one accelerometer
(m/s2); lower, coherence.
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enough for estimating the average vibration velocity. Thus, if the fact that eight
readings are a small number is disregarded and the central limit theorem is applied,
then the conclusion is that we are 90% con"dent that the average vibration velocity
is correctly estimated within a factor of two.

The results in Figures 7 show that the strain varies with frequency, direction and
position, giving in all cases the non-dimensional strain factor C of equation (30) less
than "ve.

3.3.2. Spectral ,nite element calculation

The measurements are simulated with the spectral "nite element method (SFEM)
[4]. Using this method, the element formulation is remade for each frequency. The
shape functions are a combination of the solutions to the equations of motion with
a linear dependence on the displacements at the ends. For a pipe element, between
x"!¸ and ¸, the shape functions are

u

v

w

"

B
u

B
v

B
w

diag (exp(ax!a
p
¸)) )A ) [V

1
V
2
]T, (32)

where the row vectors B
u
, B

v
and B

w
and the wave numbers a are found

from the dispersion relations [4]. This means that any of the columns of the



Figure 7. (a) Axial strain at blocked end of pipe times sound velocity in pipe material divided by
r.m.s. radial vibration velocity.**, Point 1; } } }, Point 2; ) ) ) ), Point 3; (b) circumferential strain at
blocked end of pipe times sound velocity in pipe material divided by r.m.s. radial vibration velocity;
**, Point 4; } } }, Point 5.
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3]8 matrix
B

u
B

v
B
w

diag(exp(ax)) (33)

is an exact solution to the homogeneous equations of motion for the pipe.



Figure 8. Relative standard deviation of estimated value of r.m.s. radial vibration velocity. Legends
as in Figure 7(a).
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In equation (32)

a
p
"G

!a
a

if Re(a)(0,
otherwise,

(34)

and

V
1
"[u (!¸) v(!¸) w(!¸) Lw(!¸)/Lx],

V
2
"[u (¸) v(¸) w(¸) Lw(¸)/Lx], (35)

whereas the matrix A is governed by the linear equation system resulting
when the expression for the shape functions (32) is inserted into the boundary
conditions (35).

The response of the pipe was calculated with the SFEM using the shape functions
(32) in the element formulation. The excitation was a point force at a distance 2 m
from the blocked end. Calculations were made for frequencies from 10 Hz up to
3)2 kHz with 2 Hz spacing (the same as in the measurements). The trigonometric
orders n"0 to 8 were considered. The major time consumption when using the
SFEM is the calculation of the shape functions. Therefore, these are stored when
the element formulation is made to ensure that the post-processing below is made
e$ciently.
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3.3.3. Average radial vibration velocity

Once the nodal displacements V
1

and V
2

are known, the r.m.s. radial vibration
velocity in a pipe segment, for the trigonometric order n, is given by

S(uw)2T"
K

n
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(X
2
!X

1
) P

X2

X1

DwD2dx

"
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1
)
[V*

1
V*

2
]AH ) diag(B*

w
) )E ) diag(B

w
) )A ) [V

1
V
2
]T (36)

where * denotes complex conjugate, H denotes complex conjugate and transpose
and where the matrix E is given by

E"E (a, X
1
, X

2
, ¸)"P

X2

X1

exp(ax!a
p
¸)H exp(ax!a

p
¸) dx. (37)

The integral is calculated explicitly and upon this the [i, j] element of the matrix
E is

E[i, j]"
[exp((a*[i]#a[ j])X

2
)!exp((a*[i]#a[ j])X

1
)]

a*[i]#a[ j]
exp(!(a*

p
[i]#a

p
[ j])¸).

(38)

3.3.4. Maximum strain at the blocked end

Using the standard FEM, because of increasing discretization errors when
derivatives of the polynomial shape functions are calculated, the strains are not as
accurately calculated as the displacements. However, with the shape functions (32)
the derivatives needed for the strain are calculated explicitly without any errors.
Consequently, from equations (4), (5) and (32), the strains are given by

c
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(x, /, z)"cos n/[B
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diag(a)!zB
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diag(a)2] )W,
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)/R#z(nB
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)/R2] )W,
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x(

(x, /, z)"sin n/[!nB
u
/R#B

v
diag(a)!2z/R (B

v
#nB

w
)diag(a)] )W, (39)

where the vector W is

W(x)"diag(exp(ax!a
p
¸)) )A ) [V

1
V
2
]T. (40)

The strains are calculated at the blocked end on the outside of the pipe, at z"¹
c
/2.

The contributions for each trigonometric order n"0 until n"8 are calculated and
summed. Then the largest eigenvalue of the strain tensor, equation (10), is
calculated. This procedure is repeated for 180 equally spaced angular positions.



Figure 9. Maximum strain at blocked end of pipe times sound velocity in pipe material divided by
r.m.s. radial vibration velocity. **, estimated from "ve strain measurements; } } }, calculated; ) ) ) ),
calculated at a point 2 cm from the end.
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Finally, the maximum strain at the blocked end of the pipe is found as the
maximum of the largest principle strain in any of the 180 points along the
circumferential.

3.3.5. Results

In section 2, equation (30), the non-dimensional dynamic strain factor C was
de"ned as the maximum strain times the ratio of the sound velocity to the spatial
r.m.s. radial velocity. The calculated dynamic strain factor is plotted in Figure 9. At
low frequencies, C has an approximately constant value: C+6. At very low
frequencies, it increases somewhat as the part of the pipe where the motion is
almost blocked, increases with the wavelength and therefore the calculated r.m.s.
velocity in the section near the boundary becomes smaller. At higher frequencies,
when the n*2 modes are cut-on, the dynamic strain factor #uctuates. The di!erent
trigonometric orders are correlated as the incoming waves originate from the same
point source. As the source is several wavelengths away and the trigonometric
orders travel with di!erent speed their relative phase varies rapidly with frequency
and so does the maximum strain. The #uctuations, however, are not very large and
the constant value C+6 still applies on average. At frequencies above 1 kHz, there
is a small drop in the strain factor, probably caused by damping. At high
frequencies the energy density decays away from the source so that the vibration
energy at the blocked end has decayed more than the average energy in the section
where the velocity is calculated.
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Also plotted in Figure 9 is the measured value of C. It is found by taking, for each
frequency, the maximum of the "ve strain factors shown in Figure 7. The measured
value #uctuates more than the measured and is consistently lower. There are three
possible explanations for the di!erences: (1) The strain is measured only in one
direction at "ve positions, hence it is very unlikely that the maximum strain in the
cross-section is detected. Therefore, the measured value should be lower than the
calculated. (2) It is di$cult in practice to obtain a truly blocked boundary. Failure
to achieve this will probably result in a lower strain factor. (3) The strain gauge
length is approximately 2 cm, giving an average value rather than the strain exactly
at the blocked end. For the frequencies considered there are, for each n*1, eight
solutions to the dispersion relations: two travelling waves (one in each direction),
two exponentially decaying near"eld components and four &&standing decaying
waves''. These last four correspond to wave solutions that are cut-on above the ring
frequency, below which they have an approximately constant value. The slowest
decay corresponding to the n"1 wave is described by a+$164$i158 (1/m).
This suggests a sharp decay from the blocked boundary leading to an under-
estimate of measured strain from a "nite length gauge.

To investigate this last explanation for the di!erence between measured and
calculated results, the strain factor was calculated 2 cm away from the blocked end.
Figure 9 shows the measured and the two calculated strain factors, demonstrating
that the exact positioning of the strain gauges in#uences the results. For the
investigated pipe, the strain factor decreases approximately a factor J2 when
a point slightly away from the boundary is considered.

As mentioned in the Introduction, Karzub and Norton have measured the ratio
of maximum strain to maximum velocity [14]. They found a constant K"2,
which, since the maximum velocity for a pipe is twice the spatial r.m.s. value,
corresponds to a strain actor C"4. This is a factor J2 lower than the one found
theoretically here indicating that a "nite size strain gauge was used.

From the experiments, it is concluded that the maximum strain in a pipe can be
estimated from accelerometer measurements. In addition, the great variability of
the strain at the blocked end shows that it is di$cult to "nd the maximum strain at
a cross-section using strain gauges. In consequence, despite the uncertainty of the
exact value of the factor C for &&real-life'' structures, the velocity method is not only
more convenient, it can perhaps also be a more reliable method for "nding
maximum strain to predict fatigue life.

4. NUMERICAL EXPERIMENTS

Dimensional analysis shows the free vibration of cylinders to be a function of
only four non-dimensional numbers

b"
¹2

c
12R2

, X"

uR
c
L

, n and l, (41)

where X is the non-dimensional frequency. Forced vibrations of "nite cylinders, in
addition to the four non-dimensional numbers in equation (41), also depend on the
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excitation and on the boundary conditions. However, from the analysis in section
2.3, it follows that for a pipe that is several wavelengths long, the strain
concentration at one end does not depend on the boundary condition at the other
end. Similarly, the precise description of the excitation is not needed as it is only
re#ected by the amplitudes and phases of the incoming waves, one for each
trigonometric order, which are uncorrelated for broadband excitation. Thus, if the
trigonometric orders are not coupled by the boundary conditions, on average, they
act independently at the boundary and the strain concentration does not largely
depend on the excitation.

The numerical experiments are made with these considerations on a long pipe
point excited at its middle. The total response for the trigonometric orders n"1 to
25 is calculated. The experiment depends only on the non-dimensional numbers b,
X and l and on the boundary conditions at one end. By a systematic variation of
these, the experiments presented below are a fairly complete study of the strain
concentration in pipe structures.

4.1. INFINITE PIPE

An almost in"nite pipe is investigated to give an idea of the strains within pipes.
The pipe is 108 m long, the loss factors are g

e
"g

v
"10~5 while all other data are

as given in Table 1. The maximum strain in a cross-section 125 m away from the
excitation and the r.m.s. average radial velocity in a 5 m long section are calculated.

The dynamic strain factor is shown in Figure 10. At low frequencies, when only
the n"1 beam mode is cut-on, C has a constant value C+2. At the cut-on
frequency of the n"2 mode, C increases by a factor J3(1#1/22)/2, as is explained
in what follows.

At frequencies well below the ring frequency, the average cross-sectional average
kinetic energy density is to a good approximation given by equation (28)

e
k
"K

n
o (uw)2(1#1/n2)/2. (28)

Close to a modes cut-on frequency, the pipe response is dominated by this mode. At
the cut-on of the n"2 mode, the ratio of the square root of the kinetic energy to the
radial velocity decreases by a factor J(1#1/22)/2 giving a corresponding decrease
in strain factor. On the other hand, the strain energy in the n"1 mode is entirely
given by in-plane strain, whereas at the cut-on of a higher order mode the strain
energy is predominantly #exural [19]. With reference to equation (24), the strain
factor increases at cut-on by a factor J3. The combined e!ect of these two
phenomena is that at cut-on of the n"2 mode, C+2J3(1#1/22)/2.

At a frequency J2 times the cut-on frequency, the strain energy becomes
predominantly in-plane [24] so the strain factor decreases away from cut-on by
a factor J3 compared to its maximum value at cut-on. At somewhat higher
frequencies, the vibrations are controlled by both the n"1 and 2 modes, so the
strain factor #uctuates and increases to an intermediate value for the two modes.



Figure 10. Strain factor in an in"nite pipe.
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This pattern repeats at the cut-on of the n"3 and 4 modes, whereas at even higher
frequencies the picture becomes less regular as the response is given by an
increasing number of modes.

Despite the #uctuations discussed above, it is fair to draw the conclusion that
within an in"nite pipe the strain factor is limited in the range 1(C(4. It is of the
order C+2 at low frequencies when only the n"1 beam mode can propagate
while, neglecting coherence e!ects, C)2J3 at higher frequencies.

4.2. WITHIN A FINITE FLUID-FILLED PIPE

Within a reverberant "nite pipe, for each cut-on trigonometric order there are
two waves travelling in opposite directions. With two waves, instead of one wave,
the r.m.s. velocity increases by a factor J2 while the maximum strain increases by
a factor 2.

If in addition there is #uid within the pipe, for frequencies well below the cut-on
of internal #uid modes, the cross-sectional average kinetic energy density is given
by [19]

e
k
"K

n
o (uw)2(1#1/n2#2k/n)/2, k"Ro

f
/2¹

c
o, (42)

where o
f
is the #uid density. This expression is a function of the trigonometric order

n, while it is preferable to have it as a function of frequency. For frequencies where
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the n*2 higher order modes dominate the response, the 1/n2 (tangential in-plane
inertia) term is small while the combined radial and #uid inertia terms are
approximated as [24]

1#2k/n+(1#2k(2kX2/b)~1@5). (43)

Combining this with the results in the previous section, it is found that the strain
factor within a "nite #uid-"lled pipe, for uncorrelated trigonometric orders, is
approximately given by

C+G
2J2(1#k),

2J6(1#2k(2kX2/b)~1@5),

f(f
c2

,

f'f
c2

,
(44)

where f
c2

is the cut-on frequency for the n"2 mode in [24]
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The strain factor estimate in equation (44) agrees with the measurements on
oil-"lled pipes presented by Norton and Fahy [11]. The rest of this paper considers
only pipes without #uid.

4.3. STRAIN FACTOR AT THE END OF PIPES

For pipes described with thin-walled cylinder theory, four boundary conditions
are required at each end. In this paper, homogeneous boundary conditions of the
"rst and/or second kind are considered, that is, either the displacements or the force
resultants are set to zero at the end. Thus, the four boundary conditions are [16]

u"0 or N
x
"0,

v"0 or S
xh"0,

w"0 or <
x
"0,

w
x
"Lw/Lx"0 or M

x
"0, (46)

where the explicit expressions for the force resultants N
x
, S

xh , <x
and M

x
are given

in reference [16, equation (2.144), Tables 1.4 and 1.5]. However, they are not needed
here since the spectral FE calculations are based upon a variational principle.
Boundary conditions of the second kind are then natural boundary conditions,
meaning that if no requirements are made on one of the displacement components,
they will result in zero force.

The boundary conditions use the convention of Leissa [16, section 2.4.6], i.e., the
blocked boundary condition is labelled (u, v, w, w

x
) and the shear-diaphragm

boundary condition is labelled (N , v, w, M ).

x x
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A 200 m long pipe point excited at its middle is considered. The maximum strain
at one end and the spatial r.m.s. average radial velocity in a section starting 1 m
from the end and extending 5 m towards the source are calculated. The loss factors
are g

e
"g

v
"10~6 at the pipe section where the strain is calculated and

g
e
"g

v
"10~3 in the other section. Unless explicitly stated the other data are as

speci"ed in Table 1.

4.3.1. =all thickness

To investigate the importance of the parameter b on the strain factor, three
di!erent wall thicknesses are considered: R/¹

c
"15, 40 and 120. Calculations are

made for the blocked boundary condition (u, v, w, w
x
).

The calculated strain factors are plotted in Figure 11(a) for narrow bands and in
Figure 11(b) for one-third octave bands. As found in section 3.3, at low frequencies
the strain factor is a constant 4J2. At cut-on of higher order modes, it "rst drops
and then starts to #uctuate (because of coherence between di!erent waves) and may
become slightly larger. On average, the strain factor C"4J2 applies while in this
experiment it is limited to C(7.

The factor 4J2 may be obtained from the heuristic argument that: the strain
factor within a pipe is 2J2, this value applies at antinodes where the translational
motion of the cross-section is not restricted while the cross-sectional rotation and
the pipe wall rotation are zero. It then seems plausible that the strain doubles if the
former motions are restricted. This argument is supported by the results in
Figure 11(b).

4.3.2. ¹he Poisson ratio

The dependence of strain factors on the Poisson ratio is investigated. The
calculations are made, as in the previous section by considering a blocked
boundary, for pipes with wall thickness¹

c
"R/40 and with the Poisson ratio l"0,

0)3 and 0)5. The results are for clarity shown in 1/3-octave bands in Figure 12. As
can be seen, the strain factor drops approximately by 30% for l"0 while it is quite
similar for l"0)3 and 0)5. It may then be concluded that the strain factor does not
largely depend on the Poisson ratio.

4.3.3. Other standard boundary conditions

For pipes, there are in total 16 homogeneous boundary conditions of the "rst
and second kind. The blocked boundary condition (u, v, w, w

x
) is discussed above.

The other three standard boundary conditions are the free (N
x
, S

xh, <x , Mx
), the

sliding (u, S
xh, <x , wx

) and the shear diaphragm (simply supported) (N
x
, v, w

x
, M

x
)

boundary conditions. The strain factors for the remaining 12 boundary conditions
are presented in section 4.4. Most of them are not easily realized in practise so the
engineering signi"cance of this investigation is perhaps limited. However, the
results raise some interesting questions.

Figure 13 shows the strain factors for three standard boundary conditions, for
a pipe with l"0)3 and ¹

c
"R/40. The shear-diaphragm boundary condition



Figure 11. (a) Strain factor at blocked end. **, ¹
c
"R/120; } } }, ¹

c
"R/40; ) ) ) ) ) ) , ¹

c
"R/15;

(b) strain factor at blocked end in one-third octave bands:**, ¹
c
"R/120; } } }, ¹

c
"R/40; ) ) ) ) ) ),

¹
c
"R/15; } ) } ) , 4J2.
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(N
x
, v, w, M

x
) is special in that it does not introduce any near"eld component [16].

At frequencies below the ring frequency, the n"1 waves in pipes are described by
the beam theory. For an Euler beam, the strain is zero at a simply supported end.
Similarly, for a Timoshenko beam the axial in-plane strain is zero but, increasingly



Figure 12. Strain factor at blocked end in one-third octave bands:**, l"0; } } }, l"0)3; ) ) ) ) ) ),
l"0)5; } ) } ) , 4J2.

Figure 13. Strain factor:**, at free end; } } }, at shear-diaphragm end; ) ) ) ) ) ) , at sliding end; } ) } ) ,
4J2.
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with frequency, there is some in-plane shear strain. Apparently, see Figure 13, this
also applies for pipes. At the cut-on of higher order modes the dominating terms in
the strain energy are the circumferential #exural and in-plane axial strains. Both
these terms are zero at a shear diaphragm end and therefore the strain factor drops
at cut-on. But for frequencies close to the ring frequency, the strain factor at
a shear-diaphragm end is smaller than the one that applies within pipes.

The strain factor for a free boundary (N
x
, S

xh, <x , Mx
) is small at lower

frequencies. At cut-on frequencies, where the circumferential #exural stain is large,
the strain factor reaches the limiting value C+4J2, the same that applies for
a blocked boundary. Finally, the strain factor found for a sliding boundary
(u, S

xh, <x , wx
) has quite an undramatic behaviour and the same applies for all

frequencies of the order of the one found within pipes.
In summary, the numerical experiments presented in this section show that, but

for details in narrow bands, the strain factor is independent of wall thickness and
has little dependence on the Poisson ratio. Additionally, if the maximum strain is
sought at any point in the pipe, the strain factor is independent of both frequency
and boundary condition, within a factor of two. Thus, for the four boundary
conditions considered, the calculated strain factors are in narrow bands limited by
C(7 and on the average by C)4J2. For some boundary conditions, the strain
factor has its maximum within the pipe.

4.4. OTHER BOUNDARY CONDITIONS

The strain factors for four &&standard'' boundary conditions were calculated
above. Figure 14 shows the strain factor for the remaining 12 homogeneous
boundary conditions of the "rst or second kind.

In section 4.3.3, it was found that for the four boundary conditions considered
the frequency-averaged strain factor is limited by C)4J2. In section 2, it was
argued that, since there is no reactive energy exchange at the end of a pipe where the
boundary conditions are of the "rst or second kind, there should not be any local
resonances and therefore the amplitude of the near"eld terms should not be
substantially greater than the amplitude of the incoming wave and, consequently,
the strain factor should be limited. It is seen from Figure 14 that this is not true for
all homogeneous boundary conditions; the strain factor calculated from the strain
at the boundary is not limited to C)4J2. However, it is so limited for all
boundary conditions when it is calculated from the strain 1 cm away from the
boundary*R/3+1 cm.

For the boundary conditions (N
x
, v, w, w

x
), (N

x
, v, <

x
, w

x
), (N

x
, S

xh, w, w
x
) and

(N
x
, S

xh, <x , wx
), the strain factor increases at very low frequencies. All these

boundary conditions have the rotation of the shell wall, w
x
, restricted while the

cross-sectional rotation, u/R, is free. Figure 15 shows for the boundary condition
(N

x
, v, w, w

x
) the strains for the n"1 mode in the pipe at X"1)26]10~3

( f"10 Hz) as functions of the distance from the boundary. Close to the boundary,
the axial strain is large while it decreases exponentially at a rate corresponding to
the real part of the standing decaying wave numbers (a"!248$i245 (1/m)).



Figure 14. (A) Strain factor for di!erent boundary conditions, R/¹
c
"40, l"0)3, **, at end;

} } }, 1 cm from end; ) ) ) ) , 4J2: (a) (N
x
, v, w, w

x
); (b) (u, S

xh, w, w
x
); (c) (u v, <
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x
); (d) (u, v, w, M

x
).

Figure 14. (B) Strain factor for di!erent boundary conditions, R/¹
c
"40, l"0)3, **, at end;

} } }, 1 cm from end; ) ) ) ) , 4J2: (a) (u, v, <
x
, M

x
); (b) (u, S

xh, w, M
x
); (c) (N

x
, v, <

x
, w

x
); (d) (N

x
, S

xh, w, w
x
).
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Figure 14. (C) Strain factor for di!erent boundary conditions, R/¹
c
"40, l"0)3, **, at end;

} } }, 1 cm from end; ) ) ) ) , 4J2: (a) (u, S
xh, <x , Mx

); (b) (N
x
, v, <

x
, M

x
); (c) (N

x
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xh, w, M
x
); (d)

(N
x
, S

xh, <x , wx
).

Figure 15. Amplitudes of strain on the outside of the wall in the n"1 beam mode normalized with
the ratio of the sound velocity to the r.m.s. radial vibration velocity, R/¹

c
"40, l"0)3, boundary

condition (N
x
, v, w, w

x
), X"1)26]10~3: **, axial strain; } } }, shear strain; ) ) ) ) , circumferential

strain.
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Figure 16. Strain factor for boundary condition (u, S
xh, w, M

x
), R"¹

c
/40, l"0)3; } } }, n"1;

**, n"2, 3,2, 12.
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For the boundary conditions (u, S
xh, w, w

x
), (u, S

xh, w, M
x
), (N

x
, S

xh, w, w
x
) and

(N
x
, S

xh, w, M
x
), the strain factor increases at intermediate frequencies. These

boundary conditions have the radial but not the tangential displacement blocked.
In Figure 16, the strain factors are plotted for the trigonometric orders 1}12 for the
boundary condition (u, S

xh, w , M
x
) showing that the large strain factor found in

Figure 14(b) is predominantly due to the n"1 mode.
Using beam theory for describing the n"1 pipe vibrations, the motion restraints

are that the tangential and radial displacements have equal magnitude and that, at
low frequencies, the cross-sectional rotation is proportional to the slope of the
radial displacement, i.e., to the shell wall rotation. The two groups of boundary
conditions considered above do not ful"l both these restraints, so, the standing
decaying waves are excited. This is veri"ed by inspecting the relative amplitudes of
the waves at the boundary showing that the standing decaying near"eld waves have
a large amplitude when the strain factor is large. In Figure 15, it is noted that at
a distance away from the boundary equal to the wall thickness (0)82 mm) the axial
strain has decreased by 20%. This rapid decrease makes the application of thin-
walled shell theory not entirely satisfactory. However, it is beyond the scope of the
present work to doubt such theory.

In conclusion, for most boundary conditions, the strain factor is limited by
C)4J2. However, for some boundary conditions that are in con#ict with the
restraints on motion imposed by beam theory, the strain factor is larger than this.
In these cases, there is a large concentration of strain decaying exponentially away
from the boundary. The rate of decay is so rapid that it would be di$cult to
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measure it and as it seems di$cult to "nd a practical situation where these
boundary conditions are applied, the engineering signi"cance of the "nding of the
large strain concentration is perhaps limited.

4.5. AXISYMMETRIC MODES

At frequencies below the ring frequency there are two n"0 axisymmetric modes
that can propagate, the in-plane longitudinal mode and the torsional mode. The
n"0 longitudinal mode is included in the analysis in Section 3 but, as its mobility
is low for radial excitation, it does not much in#uence the results.

Both axisymmetric modes have di!erent relations between radial velocity and
kinetic energy from the one given in equation (28) which applies for the n*1
radial}axial modes. The torsional mode has, using thin-walled cylinder theory, no
radial motion. Thus, by de"nition, the strain factor de"ned in equation (30) is
in"nite for this mode. Similarly, there is some radial motion from &&Poisson
coupling'' in the longitudinal mode; however, the strain factor would be very large if
equation (30) was applied. So the velocity method cannot be used to detect strain
associated with the axisymmetric modes if it is based on only radial accelerometer
measurements.

An alternative would instead be to apply the velocity method with three-axial
accelerometers estimating the total kinetic energy. The in-plane kinetic energy is
low for the higher order radial}axial modes while it is approximately equal to the
one for radial motion for the n"1 mode. Thus, estimating the strain from the total
kinetic energy should not much alter the results found in the previous sections.

Considering this, when large in-plane motion is expected the strain factor should
be

C"(c)
.!9

c
L
<

, c
L
"JE/o, <"JSu2(u2#v2#w2)T. (47)

To investigate this idea, the strain factor in equation (47) is calculated for a pipe
with l"0)3 and ¹

c
"R/40. A blocked boundary is considered and the pipe is

excited in turn with a radial, axial and transverse point force at its middle.
Figure 17 shows the strain factors calculated when the n"0 modes are considered.
At low frequencies, the strain factors are large as the section where the kinetic
energy is calculated is smaller than the wavelength so, because of the blocked
boundary condition, the averaged kinetic energy in the pipe is underestimated. The
strain factors for axial and radial excitations are identical, both these forces exciting
the longitudinal but not the torsional mode. Apart from low frequencies, it has the
almost constant value of C+2, as for Hunt's analysis for rods [7]. The transverse
force excites only the torsional mode and results in a strain factor
C+2c

T
/c

L
"2JG/E.

Figure 18 shows the strain factor calculated for the three force excitations
considering all the trigonometric orders 0}16. It is seen that the strain factors drop
somewhat as compared to the results in Section 4.3. At low frequencies, when only



Figure 17. Strain factor at blocked end R/¹
c
"40, l"0)3, n"0:**, axial and radial excitations;

} } } }, tangential excitation.

Figure 18. Strain factor at blocked end R/¹
c
"40, l"0)3, n"0, 1,2, 16: **, strain factor,

equation (47); ) ) ) ) , 4J2; top, axial excitation; middle, tangential excitation; bottom, radial excitation.
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the n"1 beam mode and the n"0 axisymmetric modes can propagate, the strain
factor based on equation (47) is approximately C+4. At somewhat higher
frequencies, when the n*2 radial}axial modes can propagate, it increases to be
approximately C+4J2/(1#1/n2). Finally, for frequencies close to the ring
frequency the restraints against in-plane motion decreases and the strain factor
drops slightly.

In conclusion, when the axisymmetric n"0 modes are excited, the velocity
method for estimating dynamic strain must be based on the total kinetic energy as
in equation (47). In this case, the strain factor will be dependent on those modes that
dominate the response and thus it will be dependent on the excitation. It is C+1)2
for torsional modes, C+2 for longitudinal modes, C+4 for beam modes and
"nally it reaches C+6 for higher order radial}axial modes. This range of values
means that, without precise knowledge of the vibration "eld, it is di$cult to predict
fatigue life with the velocity method. However, it should still be very useful for
assessing fatigue risk.

5. CONCLUSIONS

The velocity method for estimating strain in pipe structures is investigated. With
this method, the predicted or measured spatial r.m.s. vibration velocity and
theoretically derived strain factors are used to estimate maximum strain. Average
vibration may be obtained for example from SEA. Alternatively, estimates of peak
strain and hence fatigue life can be made from estimates of spatial average velocity
obtained from a few monitoring positions.

Theoretical investigations are made showing that the strain in a point is limited
by an expression proportional to the strain energy density which in turn is related
to its cross-sectional average. For a reverberant "eld or for an in"nite pipe, the
average strain energy density is equal to the average kinetic energy density. For the
radial}axial modes of order n*1, the square root of the kinetic energy density is
proportional to the radial vibration velocity. It is argued that the strain at a pipe
end should be proportional to the amplitudes of the incoming vibrational waves
and thus to the average energy density. Upon this basis, the non-dimensional
&&strain factor'' C is de"ned as the maximum strain times the ratio of the sound
velocity in the pipe material to the r.m.s. averaged radial vibration velocity.
Measurements and numerical experiments are made to investigate whether the
strain factor is an e!ective and descriptive non-dimensional number.

Measurements made at the blocked end of a plastic pipe show that the strain
factor is an almost constant function of frequency with a value of the order of those
previously reported [11, 14]. The strain measurements are made with piezo-electric
"lm gauges that have high sensitivity and good linearity [22, 23]. The
measurements are compared with calculations using the spectral "nite element
method presented in reference [4], here developed by routines for calculating
average vibration response and for calculating strain and stress. The results agree
very well, this justifying numerical simulation of the strain concentration in pipes.

Pipe vibration is a function of only four non-dimensional numbers, the excitation
and the boundary conditions. For long pipes, the strain at one end depends only on
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the boundary conditions at the other and on the excitation via the amplitudes of the
relatively few incoming waves. If the excitation is of random and broadband
character, the incoming waves are uncorrelated. Then the strain factor can be
calculated without considering the excitation and the boundary conditions at the
other end in detail. Considering this, numerical experiments are made on a long
pipe excited by a point force at its middle. A deterministic point force is used as it
provides a check on the sensitivity of the results on the assumption of uncorrelated
excitations.

The four non-dimensional numbers, n, l, b and X and the boundary conditions
are all varied. It is found that for blocked boundary conditions the trigonometric
order, the Poisson ratio, wall thickness and frequency only have a limited in#uence
on the strain factor. All possible homogeneous boundary conditions of the "rst and
second kind, 16 in all, are considered. For most of these boundary conditions, the
strain factors are limited by the value for the blocked boundary condition: C+6.
For some of the boundary conditions, the largest strain is found within the pipe; the
strain factor is then reduced by approximately a factor of two.

The n"0 axisymmetric modes have no or little radial motion so, when these
modes are excited, the velocity method has to be based on the total kinetic energy
density including the in-plane motion. This can be accomplished with three-axial
accelerometer measurements. Numerical experiments are made showing that the
velocity method, based on total r.m.s. vibration amplitude, can be used to
simultaneously detect the maximum strain for both in-plane and out-of-plane
modes. However, the calculated strain factors depend on which modes that are
excited, ranging from C+1)2, for the torsional mode, to C+6, for higher order
radial}axial modes. This range of values means that it is di$cult to predict fatigue
life with the velocity method. However, it should still be very useful for assessing
fatigue risk.

For two groups of boundary conditions, the strain factors exceed the one for the
blocked boundary. The large strain factors are found for the n"1 beam mode
when the boundary conditions are in con#ict with the restraints on motion imposed
by beam theory. These restraints are: the amplitudes of tangential and radial
displacements are equal and, at low frequencies when Euler beam theory is valid,
that the cross-sectional rotation (axial displacement divided by the radius) is equal
to the shell wall rotation (the slope of the radial displacement). Beam theory
describes the waves within pipes with high accuracy when compared to shell theory
[19]. Thus, if the restraints on motion put up by beam theory are in con#ict with
the additional boundary conditions required by shell theory, the additional waves
that are found for shells are excited. These solutions are &&standing decaying waves''
with high wavenumbers, i.e., rapidly decaying oscillating functions. This reasoning
is con"rmed with numerical experiments where high strain concentrations, caused
by standing decaying waves, are found when the boundary conditions are that the
tangential displacement is free while the radial displacement is blocked. High strain
concentrations are also found for low frequencies if the axial displacement is free
and the rotation of the shell wall is blocked.

The boundary conditions discussed above are rarely found in pipe works. Thus,
the existence of large strain factors does not greatly restrict the practicality of the
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velocity method for "nding maximum strain at the end of pipes. However, pipes
often fail at small bore connections and at unsupported masses, e.g., at T-junctions,
#anges pressure gauges and valves. Such connections may well introduce
conditions on motion that are similar to those that applies for the boundary
conditions discussed, this possibly resulting in high strain concentrations. Indeed,
for #anges at the frequency of total transmission, large vibrations including
standing decaying waves have been found [25]. Also for a straight pipe with
a discrete mass, large vibration ampli"cations were found at the cut-on frequencies
of higher order radial}axial modes [4]. Consequently, before the velocity method
can be used with con"dence, more research in this area has to be undertaken to "nd
limits for the strain concentration at equipment mounted on pipes.
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